If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-45x=28
We move all terms to the left:
7x^2-45x-(28)=0
a = 7; b = -45; c = -28;
Δ = b2-4ac
Δ = -452-4·7·(-28)
Δ = 2809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2809}=53$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-53}{2*7}=\frac{-8}{14} =-4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+53}{2*7}=\frac{98}{14} =7 $
| r-39=7 | | 19=c-16 | | X-6+2=5x | | 9v-30=20v-21 | | -3(4s-1)-3=-2(8s+8)-2 | | W=32-0.5n | | -3n-16=3n=44 | | 19b=11 | | y-62+y-62*y=180 | | 23d=3 | | 9/4=x+3 | | Y=5x+7.50 | | (3-v)(3v-5)=0 | | 17w=13 | | 7/4=x+4 | | 14+X2x=8 | | -3x+-1=-21/2 | | 3(2z^2+7z-15=0) | | X+16+x=46 | | 2/4=x+9 | | 3z^2(2z+7)-(45)=0 | | 11/15=w-18/15 | | 8y-1=9y-2y | | 11/3=x+5 | | -0.375−11=13h | | (6z^2)+21z-45=0 | | 8+2x-5=4x-5 | | 1/3m+2/3m=-1 | | 6z^2+21z-45=0 | | 9x-9=3+9x | | 6(5x+4)-13=30x+11 | | 3z^2(2z+7)-45=0 |